

Technical Data Sheet

SmartWipes® 401 UnderStencil

Product Description

UnderStencil is a hydroentangled blend of 55% cellulose / 45% polyester wipe that can be used in a variety of manufacturing applications and cleaning processes. A multipurpose, micro-level cleaning material, made from DuPont™ Sontara®, that is specifically engineered for cleanroom applications.

Hydroentanglement: Also known as spunlacing, entangles the fibers to give strength to the web. It uses fine, high-pressure jets of water to strike a web to intermingle the fibers, resulting in the bonded fabric being a nonwoven. Nonwovens made by this method have high fabric integrity.

Electronics: This cleanroom grade wipe effectively removes all types of medium with or without solvents and keeps stencil undersides clean and free from contamination to prevent smearing of PC boards between prints. UnderStencil wipes are lint-free and dust-free and are ideal for ultra-fine pitch solder paste printing, particularly with automated screen and stencil printers. Manufactured from the same DuPont Sontara CleanMaster fabric as JNJ's SmartRoll® 4000 Series understencil wiping rolls.

Features

Absorbent: absorbs four times their own weight.

Strong: hydroentangling creates a stronger web, resists tearing and shredding.

Non-abrasive: soft texture, won't scratch surfaces, wet or dry.

Low Particle: low in soluble extractables and metallic ions - no binders, starches or thermal bonding techniques.

Cleanroom Prepared: converted, cleaned and double-bag packaged in a cleanroom environment.

Chemical Tolerance: Won't break down, has excellent chemical tolerance.

Cleanroom Class

ISO 14644-1 Cleanroom Standard	ISO Class 4 - 5
US FED STD 209E Cleanroom Standard	Class 100

Basis Weight

(oz/yd^2)	2.0
(g/m²)	68

Thickness

(mils)	12
(mm)	0.305

Sorbency Capacity

Intrinsic (mL/g)	4.70
Extrinsic (mL/m ²)	317
Test Method	IEST-RP-CC004 3

Nonvolatile Residue (NVR) (mg/g)

Deionized Water	0.673
Isopropyl Alcohol	0.157
Test Method	IEST-RP-CC004.3
A Company of the Comp	

lons (ppm)

Sodium	1.43
Chloride	9.06
Test Method	IEST-RP-CC004.3

Particles (million/m²)

0.5 - 5.0 μm	136
5.0 - 100 μm	8.8
Test Method	IEST-RP-CC004.3

Fibers (fibers/m²)

>100 µm	933,000
Test Method	IEST-RP-CC004.3

Packaging

Size*	9" x 9"
Wipes Per Package	300
Packages Per Case	12
*custom sizes on request: 4"x4", 6"x6", 12"x12"	
Total Wines Per Case	3600

Case Weight & Dimensions

Weight		31 lbs
Dimensions	18 9/16" x 18 1/2" x 12	2 1/4"

Availability

Products are available through global sales and a nationwide network of distributors.

Environmental Policy

As a leading manufacturer and supplier of SMT production supplies; JNJ is committed to providing high quality products and services in a manner that does not impact upon, but enhances the environment.

