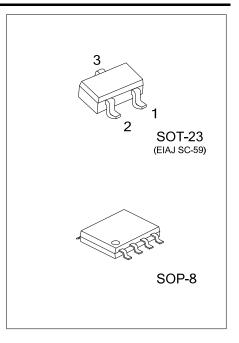
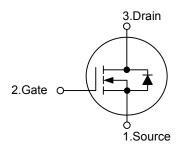
UNISONIC TECHNOLOGIES CO., LTD

UT2312 **Power MOSFET**

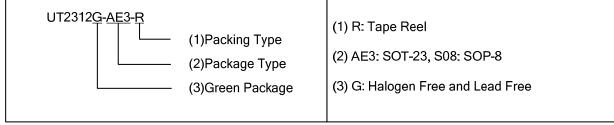

5A, 20V N-CHANNEL ENHANCEMENT MODE MOSFET

DESCRIPTION


The UT2312 uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with low gate voltages. This device is suitable for use as a load switch or in PWM applications.

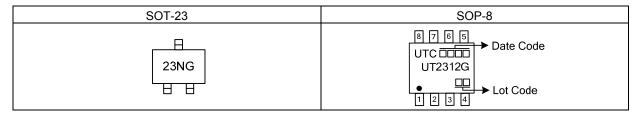
FEATURES

- * $R_{DS(ON)}$ < 33 m Ω @ V_{GS} =4.5V, I_{D} =5.0 A
- * $R_{DS(ON)}$ < 40 m Ω @ V_{GS} =2.5 V, I_D =4.0 A
- * Advanced trench process technology
- * Excellent thermal and electrical capabilities
- * High density cell design for ultra low on-resistance


SYMBOL

ORDERING INFORMATION

Ordering Number	Package	Pin Assignment							Dooking	
		1	2	3	4	5	6	7	8	Packing
UT2312G-AE3-R	SOT-23	S	G	D	-	-	-	-	-	Tape Reel
UT2312G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel


Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 3 QW-R502-205.G

UT2312 Power MOSFET

■ MARKING

UT2312 Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_A =25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	20	V
Gate-Source Voltage		V_{GSS}	±8	V
Continuous Drain Current		I_{D}	5	Α
Pulsed Drain Current		I_{DM}	15	Α
Power Dissipation (T _A =25°C) (Note 2)	SOT-23 SOP-8	P _D	1.25	W
			2	W
Junction Temperature		T_J	+150	°C
Storage Temperature		T_{STG}	-55 ~ + 150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

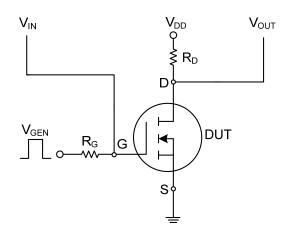
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

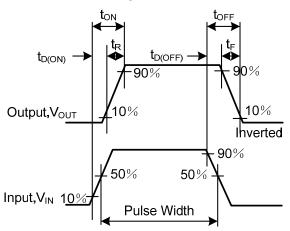
PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	SOT-23	θЈА	100	°C/W
	SOP-8		62.5	°C/W

■ ELECTRICAL CHARACTERISTICS (T_A =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250 μA	20			V			
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20 V, V _{GS} =0 V			1.0	μΑ			
Gate-Body Leakage, Forward	I _{GSS}	$V_{GS} = \pm 8V$, $V_{DS} = 0$ V			±100	nA			
ON CHARACTERISTICS									
Gate-Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	0.45			V			
Static Drain–Source On–Resistance	R _{DS(ON)}	V_{GS} =4.5V, I_{D} =5.0 A		25	33	mΩ			
		V _{GS} =2.5 V, I _D =4.0 A		35	40	mΩ			
On-State Drain Current	I _{D(ON)}	V _{DS} ≥10 V, V _{GS} = 4.5 V	15			Α			
Forward Transconductance	g fs	$V_{DS} = 5V$, $I_{D} = 5.0 A$		20		S			
DYNAMIC PARAMETERS									
Input Capacitance	C _{ISS}			900		pF			
Output Capacitance	Coss	V_{DS} =10V, V_{GS} =0V, f=1.0MHz		140		pF			
Reverse Transfer Capacitance	C _{RSS}			100		pF			
SWITCHING PARAMETERS									
Total Gate Charge	Q_G			11	14	nC			
Gate Source Charge	Q_GS	V_{DS} =10V, V_{GS} =4.5V, I_{D} =3.6A		1.4		nC			
Gate Drain Charge	Q_GD			2.2		nC			
Turn-ON Delay Time	t _{D(ON)}			15	25	ns			
Turn-ON Rise Time	t _R	V_{DD} =10V, I_{D} =1A, R_{L} =10 Ω		40	60	ns			
Turn-OFF Delay Time	t _{D(OFF)}	V_{GEN} =4.5V, R_G =6 Ω		48	70	ns			
Turn-OFF Fall-Time	t _F			31	45	ns			
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS									
Drain-Source Diode Forward Voltage	V_{SD}	I _S =1.0 A,V _{GS} =0 V		0.75	1.2	V			
Max. Diode Forward Current	Is				1.6	Α			
Notes: Dules test, sules width < 2000s									


Notes: Pulse test; pulse width ≤ 300µs, duty cycle ≤ 2%

^{2.} Surface mounted on 1 in 2 copper pad of FR4 board.


UT2312 Power MOSFET

■ TEST CIRCUIT AND WAVEFORM

Switching Test Circuit

Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.