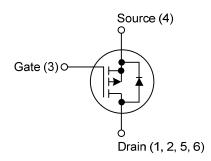


UNISONIC TECHNOLOGIES CO., LTD

UT3443 Power MOSFET

P-CHANNEL 2.5-V (G-S) MOSFET

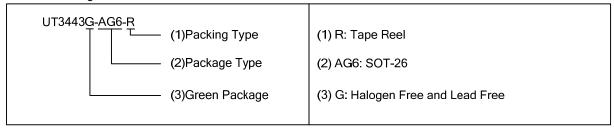
■ DESCRIPTION


The UTC **UT3443** is a P-channel power MOSFET using UTC's advanced trench technology to provide customers with a minimum on-state resistance and extremal low gate charge with a 12V gate rating.

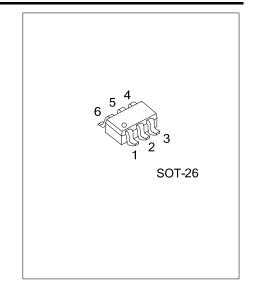
■ FEATURES

- * V_{DS(V)}= -20V
- * I_D=-4.5A
- $*R_{DS(ON)} < 100 \text{m}\Omega \text{ @V}_{GS} = -2.5 \text{V},$

 $R_{DS(ON)} < 65 m\Omega @V_{GS} = -4.5V$


■ SYMBOL

ORDERING INFORMATION


Ordering Number	Package	Pin Assignment					Dooking	
		1	2	3	4	5	6	Packing
UT3443G-AG6-R	SOT-26	D	D	G	S	D	D	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 3

UT3443 Power MOSFET

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	-20	V	
Gate-Source Voltage		V_{GSS}	±12	V	
Drain Current	Continuous	T _A =25°C	I _D	-4.5	Α
	T _J =150°C (Note 2)	T _A =70°C		-3.6	Α
	Pulsed		I _{DM}	-20	Α
Power Dissipation (Not	e 2)	T _A =25°C	P _D 1.1		W
Junction Temperature		T_J	+150	°C	
Storage Temperature		T _{STG}	-55~+150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	110	°C/W

Note: Surface Mounted on FR4 Board, t≤5 sec

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise noted)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Leakage Current		I _{DSS}	V _{DS} =-20V, V _{GS} =0V			-1	
			V _{DS} =-20V, V _{GS} =0V, T _C =70°C			-5	μA
Gate- Source Leakage Current	Forward		V _{GS} =+12V, V _{DS} =0V			+100	nA
	Reverse	I_{GSS}	V _{GS} =-12V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-0.6		-1.4	V
Static Drain Course On State Basisters		R _{DS(ON)}	V _{GS} =-4.5V, I _D =-4.5A		0.050	0.065	Ω
Static Drain-Source On-State Resistance	V _{GS} =-2.7V, I _D =-3.8A			0.070	0.090	Ω	
(Note 1)			V _{GS} =-2.5V, I _D =-3.7A		0.080	0.100	Ω
SWITCHING PARAMETERS (N	ote 2)						
Total Gate Charge		Q_G			7.3	15	nC
Gate to Source Charge		Q_GS	V_{GS} =-4.5V, V_{DS} =-10V, I_{D} =-4.5A		2.0		nC
Gate to Drain Charge		Q_GD			1.9		nC
Gate Resistance		R_{g}		3		15	Ω
Turn-ON Delay Time		$t_{D(ON)}$			15	50	ns
Rise Time		t_R	V _{DD} =-10V, I _D ≈-1.0A,		32	60	ns
Turn-OFF Delay Time		t _{D(OFF)}	V_{GEN} =-4.5V, R_L =10 Ω , R_G =6 Ω		50	100	ns
Fall-Time		t_{F}			45	80	ns
SOURCE- DRAIN DIODE RATIF	NGS AND	CHARACTERI	STICS				
Drain-Source Diode Forward Voltage (Note 1)		V _{SD}	Is=-1.7A. V _{GS} =0V		-0.8	-1.2	V
			IS1.7A, VGS-UV		-0.0	-1.2	V
Body Diode Reverse Recovery Time		t_RR	I _F =-1.7A, di/dt=100A/μs		35	80	ns

Notes: 1. Pulse test; pulse width ≤300µs, duty cycle ≤2%.

2. Guaranteed by design, not subject to production testing.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.