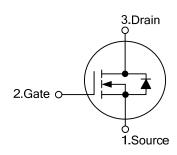
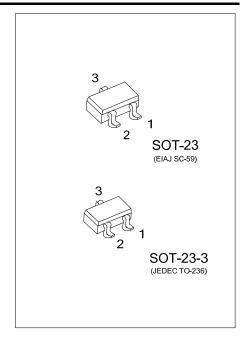


UNISONIC TECHNOLOGIES CO., LTD

UT3414 Power MOSFET

N-CHANNEL ENHANCEMENT MODE

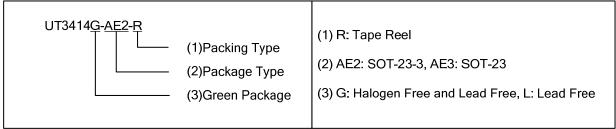

■ DESCRIPTION

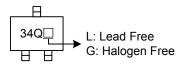

The **UT3414** uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch or in PWM applications.

■ FEATURES

- * $R_{DS(ON)}$ < 50m Ω @ V_{GS} =4.5V, I_D =4.2A
- * $R_{DS(ON)}$ < 63m Ω @ V_{GS} =2.5V, I_{D} =3.7A
- * $R_{DS(ON)}$ < 87m Ω @ V_{GS} =1.8V, I_D =3.2A
- * Low capacitance
- * Low gate charge
- * Fast switching capability
- * Avalanche energy specified

■ SYMBOL




ORDERING INFORMATION

Ordering Number		Dealtage	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT3414L-AE2-R	UT3414G-AE2-R	SOT-23-3	S	G	D	Tape Reel	
UT3414L-AE3-R	UT3414G-AE3-R	SOT-23	S	G	D	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

UT3414 Power MOSFET

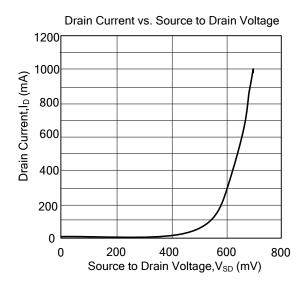
■ **ABSOLUTE MAXIMUM RATINGS** (T_A = 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Drain-Source Voltage	V_{DSS}	20	V
Gate-Source Voltage	V_{GSS}	±8	V
Continuous Drain Current	I _D	4.2	Α
Pulsed Drain Current	I _{DM}	15	Α
Power Dissipation	P_{D}	1.4	W
Junction Temperature	T_J	+150	°C
Storage Temperature	T _{STG}	-55 ~ + 150	°C

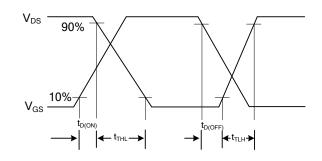
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

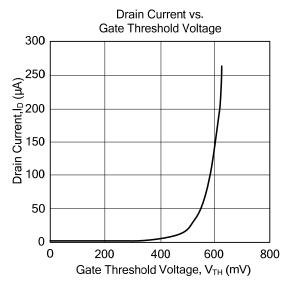
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

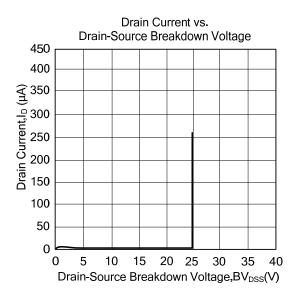
■ THERMAL DATA

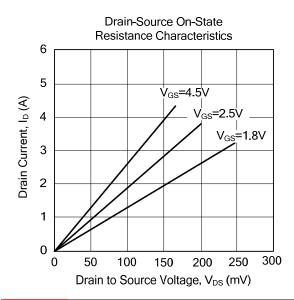

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Junction to Ambient	θ_{JA}		100	125	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)


	t	<u> </u>	1	1	i	i
PARAMETER	SYMBOL	TEST CONDITIONS MIN TY		TYP	MAX	UNIT
OFF CHARACTERISTICS	.		1	1		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA	20			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =16V, V _{GS} =0V			1	μΑ
Gate-Source Leakage Current	I _{GSS}	V _{DS} =0V, V _{GS} =±8V			100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	$V_{GS(TH)}$ $V_{DS}=V_{GS}$, $I_D=250\mu A$		0.4	0.6	1	V
On State Drain Current	I _{D(ON)}	V _{DS} =5V, V _{GS} =4.5V	15			Α
		V _{GS} =4.5V, I _D =4.2A		41	50	
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =2.5V, I _D =3.7A		52	63	mΩ
		V _{GS} =1.8V, I _D =3.2A		67	87	
DYNAMIC PARAMETERS						
Input Capacitance	C _{ISS}			436		pF
Output Capacitance	Coss	V_{DS} =10V, V_{GS} =0V, f=1.0MHz		66		pF
Reverse Transfer Capacitance	C_{RSS}			44		pF
SWITCHING PARAMETERS						
Total Gate Charge	Q_G			6.2		nC
Gate Source Charge	Q_GS	V_{DS} =10V, I_{D} =4.2A, V_{GS} =4.5V		1.6		nC
Gate Drain Charge	Q_GD			0.5		nC
Turn ON Delay Time	t _{D(ON)}			5.5		ns
Turn ON Rise Time	t _R	V_{DS} =10V, V_{GS} =5V, R_L =2.7 Ω		6.3		ns
Turn OFF Delay Time	t _{D(OFF)}	$R_G=6\Omega$		40		ns
Turn OFF Fall-Time	t _F			12.7		ns
SOURCE- DRAIN DIODE RATINGS A	ND CHARAC	CTERISTICS				
Maximum Body-Diode Continuous					2	^
Current	I _S					Α
Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _S =1.0A		0.76	1	V
Body Diode Reverse Recovery Time	t _{rr}	I _F =4.0A, dI/dt=100A/μs		12.3		ns
Body Diode Reverse Recovery Charge	Q _{rr}	I _F =4.0A, dI/dt=100A/μs		3.5		nC
Charge		, , , , , , , , , , , , , , , , , , , ,				


^{2.} Repetitive Rating: Pulse width limited by maximum junction temperature.


■ TYPICAL CHARACTERISTICS



Switching Time Waveforms

UT3414

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.